A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue.

نویسندگان

  • Y Rudy
  • W L Quan
چکیده

The effects of the discrete cellular structure on propagation of electrical excitation in cardiac muscle were studied in a one-dimensional fiber model containing a periodic intercalated disk structure. Globally, the macroscopic velocity of propagation follows the behavior associated with propagation in a continuous tissue (except for high values of disk resistance). In addition, the computed spatial extracellular potential along the fiber is a smooth biphasic waveform and does not reflect the underlying discrete cellular structure of the tissue. Other results of the simulations demonstrate the discontinuous nature of propagation and the importance of the structure in arrhythmogenesis. Vmax displays a biphasic behavior as a function of increasing intercalated disk resistance. An initial "paradoxical" increase in Vmax (with a simultaneous decrease in conduction velocity) is followed by a decrease that leads to decremental propagation and conduction block. The time constant of the foot of the action potential (tau foot) increases monotonically with increasing intercalated disk resistance. An increase in the leakage current to extracellular space brings about a significant decrease in the action potential duration and a loss of the plateau. This major effect is accompanied by a relatively smaller decrease in conduction velocity. Collision of two activation wavefronts results in a significant (100%) increase in Vmax and a very small (0.6%) decrease in tau foot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

Toxicity Effects of Intraperitoneal Injection of Biochemical Nanosilver on Cardiac Tissue Structure Following Aerobic Training in Male Wistar Rats

Aims Silver nanoparticles are among the most valuable products of nanoscale technology, widely used in various sciences. The present study investigated the effects of biochemical silver nanoparticles on the structure of the heart tissue of non-observatory rats in the course of aerobic training. Methods & Materials In this experimental study, 30 male Wistar rats aged 8 to 12 weeks and weighing ...

متن کامل

The Different Mechanisms of Action Potential Propagation in the Heart

It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...

متن کامل

The Different Mechanisms of Action Potential Propagation in the Heart

It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...

متن کامل

Quantum Squeezed Light Propagation in an Optical Parity-Time (PT)-Symmetric Structure

We investigate the medium effect of a parity-time (PT)-symmetric bilayer on the quantum optical properties of an incident squeezed light at zero temperature (T=0 K). To do so, we use the canonical quantization approach and describe the amplification and dissipation properties of the constituent layers of the bilayer structure by Lorentz model to analyze the quadrature squeezing of the outgoing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 61 6  شماره 

صفحات  -

تاریخ انتشار 1987